Weighted two-parameter Bergman space inequalities

dc.contributor.author
Wilson, J. Michael
dc.date.issued
2003
dc.identifier
https://ddd.uab.cat/record/2002
dc.identifier
urn:10.5565/PUBLMAT_47103_08
dc.identifier
urn:oai:ddd.uab.cat:2002
dc.identifier
urn:articleid:20144350v47n1p161
dc.identifier
urn:oai:raco.cat:article/38071
dc.identifier
urn:scopus_id:2442450262
dc.identifier
urn:wos_id:000182528900008
dc.description.abstract
For f , a function defined on Rd1 ×Rd2 , take u to be its biharmonic extension into R+ +1 × Rd2 +1 . In this paper we prove strong d1 + sufficient conditions on measures µ and weights v such that the inequality 1/q q ∇2 u dµ(x1 , x2 , y1 , y2 ) d +1 d +1 R+1 ×R+2 1/p ≤ f p v dx Rd1 ×Rd2 will hold for all f in a reasonable test class, for 1 < p ≤ 2 ≤ q < ∞. Our result generalizes earlier work by R. L. Wheeden and the author on one-parameter harmonic extensions. We also obtain sufficient conditions for analogues of (∗) to hold when the entries of ∇1 ∇2 u are replaced by more general convolutions.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Publicacions matemàtiques ; V. 47 N. 1 (2003), p. 161-193
dc.rights
open access
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Bergman spaces
dc.subject
Weighted norm inequalities
dc.subject
Littlewood-Paley theory
dc.title
Weighted two-parameter Bergman space inequalities
dc.type
Article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)