Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures

Author

García-Cuerva Abengoza, José

Gatto, A. Eduardo

Publication date

2005

Abstract

In the setting of a metric measure space (X, d, µ) with an n-dimensional Radon measure µ, we give a necessary and sufficient condition for the boundedness of Calder'n-Zygmund operators associated to the measure µ on Lipschitz spaces on the support of µ. Also, for the Euclidean space Rd with an arbitrary Radon measure µ, we give several characterizations of Lipschitz spaces on the support of µ, Lip(α, µ), in terms of mean oscillations involving µ. This allows us to view the "regular" BMO space of X. Tolsa as a limit case for α → 0 of the spaces Lip(α, µ).

Document Type

Article

Language

English

Publisher

 

Related items

Publicacions matemàtiques ; V. 49 n. 2 (2005) p. 285-296

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)