dc.contributor.author
Kozlowska-Walania, Ewa
dc.identifier
https://ddd.uab.cat/record/18755
dc.identifier
urn:10.5565/PUBLMAT_51207_02
dc.identifier
urn:oai:ddd.uab.cat:18755
dc.identifier
urn:oai:raco.cat:article/218490
dc.identifier
urn:scopus_id:34547400446
dc.identifier
urn:articleid:20144350v51n2p291
dc.description.abstract
Studying commuting symmetries of p-hyperelliptic Riemann surfaces, Bujalance and Costa found in [3] upper bounds for the degree of hyperellipticity of the product of commuting (M - q)- and (M - q')-symmetries, depending on their separabilities. Here, we find necessary and sufficient conditions for an integer p to be the degree of hyperellipticity of the product of two such symmetries, taking into account their separabilities. We also give some results concerning the existence and uniqueness of symmetries from which we obtain a series of important results of Natanzon concerning Mand (M - 1)-symmetries.
dc.format
application/pdf
dc.relation
Publicacions matemàtiques ; V. 51 n. 2 (2007) p. 291-307
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Riemann surface
dc.subject
Symmetry of Riemann surface
dc.subject
Oval of a symmetry of a Riemann surface
dc.title
On p-hyperellipticity of doubly symmetric Riemann surfaces