dc.contributor.author
Pantrigo, Juan José
dc.contributor.author
Sánchez, Ángel
dc.contributor.author
Gianikellis, Kostas
dc.contributor.author
Montemayor, Antonio S.
dc.identifier
https://ddd.uab.cat/record/24399
dc.identifier
urn:oai:ddd.uab.cat:24399
dc.identifier
urn:10.5565/rev/elcvia.107
dc.identifier
urn:oai:elcvia.revistes.uab.cat:article/107
dc.identifier
urn:oai:raco.cat:article/31623
dc.identifier
urn:articleid:15775097v5n3p68
dc.description.abstract
Visual tracking of articulated motion is a complex task with high computational costs. Because of the fact that articulated objects are usually represented as a set of linked limbs, tracking is performed with the support of a model. Model-based tracking allows determining object pose in an effortless way and handling occlusions. However, the use of articulated models generates a multidimensional state-space and, therefore, the tracking becomes computationally very expensive or even infeasible. Due to the dynamic nature of the problem, some sequential estimation algorithms like particle filters are usually applied to visual tracking. Unfortunately, particle filter fails in high dimensional estimation problems such as articulated objects or multiple object tracking. These problems are called \emph{dynamic optimization problems}. Metaheuristics, which are high level general strategies for designing heuristics procedures, have emerged for solving many real world combinatorial problems as a way to efficiently and effectively exploring the problem search space. Path relinking (PR) and scatter search (SS) are evolutionary metaheuristics successfully applied to several hard optimization problems. PRPF and SSPF algorithms respectively hybridize both, particle filter and these two population-based metaheuristic schemes. In this paper, We present and compare two different hybrid algorithms called Path Relinking Particle Filter (PRPF) and Scatter Search Particle Filter (SSPF), applied to 2D human motion tracking. Experimental results show that the proposed algorithms increase the performance of standard particle filters.
dc.format
application/pdf
dc.relation
ELCVIA. Electronic letters on computer vision and image analysis ; V. 5 n. 3 (2005) p. 68-83
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
Image Sequence Analysis
dc.subject
Articulated Motion Tracking
dc.subject
Particle Filter
dc.subject
Population based Metaheuristics
dc.subject
Scatter Search
dc.subject
Path Relinking
dc.subject
Anàlisi de seqüència d'imatge
dc.subject
Moviment articulat
dc.subject
Filtre de partícules
dc.subject
Població basada en mètode heurístic
dc.subject
Problemes computacionals
dc.subject
Cerca dispersa
dc.subject
Solucions d'iniciació
dc.subject
Solucions guia
dc.subject
Movimiento articulado
dc.subject
Filtro de partículas
dc.subject
Población basada en método heurístico
dc.subject
Problemas computacionales
dc.subject
Busqueda dispersa
dc.subject
Soluciones de iniciación
dc.subject
Soluciones guía
dc.title
Combining Particle Filter and Population-based Metaheuristics for Visual Articulated Motion Tracking