dc.contributor.author
Zhang, Mengjie
dc.contributor.author
Bhowan, Urvesh
dc.contributor.author
Ny, Bunna
dc.identifier
https://ddd.uab.cat/record/24578
dc.identifier
urn:oai:ddd.uab.cat:24578
dc.identifier
urn:10.5565/rev/elcvia.135
dc.identifier
urn:oai:elcvia.revistes.uab.cat:article/135
dc.identifier
urn:oai:raco.cat:article/85557
dc.identifier
urn:articleid:15775097v6n1p27
dc.description.abstract
This paper describes two innovations that improve the efficiency and effectiveness of a genetic programming approach to object detection problems. The approach uses genetic programming to construct object detection programs that are applied, in a moving window fashion, to the large images to locate the objects of interest. The first innovation is to break the GP search into two phases with the first phase applied to a selected subset of the training data, and a simplified fitness function. The second phase is initialised with the programs from the first phase, and uses the full set of training data with a complete fitness function to construct the final detection programs. The second innovation is to add a program size component to the fitness function. This approach is examined and compared with a neural network approach on three object detection problems of increasing difficulty. The results suggest that the innovations increase both the effectiveness and the efficiency of the genetic programming search, and also that the genetic programming approach outperforms a neural network approach for the most difficult data set in terms of the object detection accuracy.
dc.format
application/pdf
dc.relation
ELCVIA. Electronic letters on computer vision and image analysis ; V. 6 n. 1 (2007) p. 27-43
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
Artificial Intelligence approaches to Computer Vision Object Recognition
dc.subject
Image Analysis
dc.subject
Genetic Programming
dc.subject
Neural Networks
dc.subject
Apropament de la Intel·ligència artificial a la visió per computadora
dc.subject
Reconeixement objecte
dc.subject
Anàlisi d'imatge
dc.subject
Programació genètica
dc.subject
Acercamiento de la Inteligencia artificial en la visión por computadora
dc.subject
Reconocimiento objeto
dc.subject
Análisis de imagen
dc.subject
Programación genética
dc.title
Genetic Programming for Object Detection : a Two-Phase Approach with an Improved Fitness Function