dc.contributor.author
Betancor, Jorge J.
dc.contributor.author
Fariña, Juan C.
dc.contributor.author
Rodríguez-Mesa, Lourdes
dc.contributor.author
Testoni, Ricardo
dc.contributor.author
Torrea Hernández, J. L
dc.identifier
https://ddd.uab.cat/record/52305
dc.identifier
urn:10.5565/PUBLMAT_54110_13
dc.identifier
urn:oai:ddd.uab.cat:52305
dc.identifier
urn:oai:raco.cat:article/154826
dc.identifier
urn:scopus_id:77649299155
dc.identifier
urn:wos_id:000274418800013
dc.identifier
urn:articleid:20144350v54n1p221
dc.description.abstract
We discuss two possible definitions for Sobolev spaces associated with ultraspherical expansions. These definitions depend on the notion of higher order derivative. We show that in order to have an isomorphism between Sobolev and potential spaces, the higher order derivatives to be considered are not the iteration of the first order derivatives. Some discussions about higher order Riesz transforms are involved. Also we prove that the maximal operator for the Poisson integral in the ultraspherical setting is bounded on the Sobolev spaces.
dc.format
application/pdf
dc.relation
Publicacions matemàtiques ; V. 54 n. 1 (2010) p. 221-242
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Sobolev spaces
dc.subject
Ultraspherical expansions
dc.title
A choice of Sobolev spaces associated with ultraspherical expansions