Author

Roig, Agustí

Publication date

1993

Abstract

In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories . This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and A-minimal A-extensions of Halperin . For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes. The others follow by a caracterization of minimal objects in bifibred categories.

Document Type

Article

Language

English

Publisher

 

Related items

Publicacions matemàtiques ; Vol. 37, Núm. 2 (1993), p. 285-303

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)