In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories . This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and A-minimal A-extensions of Halperin . For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes. The others follow by a caracterization of minimal objects in bifibred categories.
English
Publicacions matemàtiques ; Vol. 37, Núm. 2 (1993), p. 285-303
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/