Isolated singularities of binary differential equations of degree n

Author

Fukui, T.

Nuño Ballesteros, Juan José

Publication date

2012

Abstract

We study isolated singularities of binary differential equations of degree n which are totally real. This means that at any regular point, the associated algebraic equation of degree n has exactly n different real roots (this generalizes the so called positive quadratic differential forms when n = 2). We introduce the concept of index for isolated singularities and generalize Poincar'e-Hopf theorem and Bendixson formula. Moreover, we give a classification of phase portraits of the n-web around a generic singular point. We show that there are only three types, which generalize the Darbouxian umbilics D1, D2 and D3.

Document Type

Article

Language

English

Subjects and keywords

Totally real differential form; Principal lines; Darbouxian umbilics; Index

Publisher

 

Related items

Publicacions matemàtiques ; Vol. 56, Núm. 1 ( 2012), p. 65-89

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)