Some discrete exponential dispersion models : poisson-tweedie and hinde-demétrio classes

Author

Kokonendji, Célestin C.

Dossou-Gbété, Simplice

Demétrio, Clarice Garcia Borges

Publication date

2004

Abstract

In this paper we investigate two classes of exponential dispersion models (EDMs) for overdispersed count data with respect to the Poisson distribution. The first is a class of Poisson mixture with positive Tweedie mixing distributions. As an approximation (in terms of unit variance function) of the first, the second is a new class of EDMs characterized by their unit variance functions of the form µ + µp, where p is a real index related to a precise model. These two classes provide some alternatives to the negative binomial distribution (p = 2) which is classically used in the framework of regression models for count data when overdispersion results in a lack of fit of the Poisson regression model. Some properties are then studied and the practical usefulness is also discussed.

Document Type

Article

Language

English

Subjects and keywords

Negative binomial distribution; Overdispersion; Poisson mixture; Tweedie family; Unit; Variance function

Publisher

 

Related items

SORT : statistics and operations research transactions ; Vol. 28, Núm. 2 (July-December 2004), p. 201-214

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/3.0/

This item appears in the following Collection(s)