We carry out a study of rings R for which HomR (M;N) 6= 0 for all nonzero N ≤ MR. Such rings are called retractable. For a retractable ring, Artinian condition and having Krull dimension are equivalent. Furthermore, a right Artinian ring in which prime ideals commute is precisely a right Noetherian retractable ring. Retractable rings are characterized in several ways. They form a class of rings that properly lies between the class of pseudo-Frobenius rings, and the class of max divisible rings for which the converse of Schur's lemma holds. For several types of rings, including commutative rings, retractability is equivalent to semi-Artinian condition. We show that a K othe ring R is an Artinian principal ideal ring if and only if it is a certain retractable ring, and determine when R is retractable.
English
CPF rings; Max ring; Regular ring; Retractable; Semi-Artinian
Publicacions matemàtiques ; Vol. 57, Núm. 1 (2013), p. 107-122
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/