Using hyperbolic form convolution with doubly isometry-invariant kernels, the explicit expression of the inverse of the de Rham laplacian ∆ acting on m-forms in the Poincaré space Hn is found. Also, by means of some estimates for hyperbolic singular integrals, Lp-estimates for the Riesz transforms ∆i∆Ñ-1, i ≤ 2, in a range of p depending on m, n are obtained. Finally, using these, it is shown that ∆ defines topological isomorphisms in a scale of Sobolev spaces Hs mp ( Hn) in case m≠ ( n ± 1) /2, n/2.
English
Hodge-de Rham laplacian; Sobolev spaces; Riesz transforms; Hyperbolic form convolution
Indiana University mathematics journal ; Vol. 54, No. 1 (2005), p. 153-187
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/