Reduced egomotion estimation drift using omnidirectional views

dc.contributor.author
Bastanlar, Yalin
dc.date.issued
2014
dc.identifier
https://ddd.uab.cat/record/122718
dc.identifier
urn:oai:ddd.uab.cat:122718
dc.identifier
urn:10.5565/rev/elcvia.564
dc.identifier
urn:oai:elcvia.revistes.uab.cat:article/564
dc.identifier
urn:oai:raco.cat:article/284232
dc.identifier
urn:scopus_id:84919771361
dc.description.abstract
Estimation of camera motion from a given image sequence is a common task for multi-view 3D computer vision applications. Salient features (lines, corners etc.) in the images are used to estimate the motion of the camera, also called egomotion. This estimation suffers from an error built-up as the length of the image sequence increases and this causes a drift in the estimated position. In this letter, this phenomenon is demonstrated and an approach to improve the estimation accuracy is proposed. The main idea of the proposed method is using an omnidirectional camera (360° horizontal field of view) in addition to a conventional (perspective) camera. Taking advantage of the correspondences between the omnidirectional and perspective images, the accuracy of camera position estimates can be improved. In our work, we adopt the sequential structure-from-motion approach which starts with estimating the motion between first two views and more views are added one by one. We automatically match points between omnidirectional and perspective views. Point correspondences are used for the estimation of epipolar geometry, followed by the reconstruction of 3D points with iterative linear triangulation. In addition, we calibrate our cameras using sphere camera model which covers both omnidirectional and perspective cameras. This enables us to treat the cameras in the same way at any step of structure-from-motion. We performed simulated and real image experiments to compare the estimation accuracy when only perspective views are used and when an omnidirectional view is added. Results show that the proposed idea of adding omnidirectional views reduces the drift in egomotion estimation.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
;
dc.relation
ELCVIA. Electronic letters on computer vision and image analysis ; Vol. 13 Núm. 3 (2014), p. 1-12
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.
dc.rights
https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject
Omnidirectional cameras
dc.subject
Structure-from-motion
dc.subject
Egomotion estimation
dc.subject
Visual odometry
dc.title
Reduced egomotion estimation drift using omnidirectional views
dc.type
Article


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)