Author

Kacem Echi, Afef

Khémiri, Akram

Belaïd, Abdel

Publication date

2014

Abstract

This paper describes a system for off-line recognition of handwritten Arabic words. It uses simple andeasily extractable features to construct feature vectors for words in the vocabulary. Some of these features are statistical, based on pixel distributions and local pixel configurations. Others are structural, based on the presence of ascenders, descenders and diacritic points. The system is evolved based on horizontal and vertical Hidden Markov Models and Dynamic Bayesian Network. Our strategy consists of looking for various architectures and selecting those which provide the best recognition performance. Experiments on handwritten Arabic words from IFN/ENIT database and ancient manuscripts strongly support the feasibility of the proposed system. The recognition rates achieve 91.89% (IFN/ENIT) and 94.61% (ancient manuscripts).

Document Type

Article

Language

English

Subjects and keywords

Feature and image descriptors; Image modelling; Statistical pattern recognition

Publisher

 

Related items

;

ELCVIA. Electronic letters on computer vision and image analysis ; Vol. 13 Núm. 3 (2014), p. 41-62

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/3.0/

This item appears in the following Collection(s)