dc.contributor.author
Bergman, George M.
dc.identifier
https://ddd.uab.cat/record/133137
dc.identifier
urn:10.5565/PUBLMAT_59215_01
dc.identifier
urn:oai:ddd.uab.cat:133137
dc.identifier
urn:oai:raco.cat:article/295186
dc.identifier
urn:articleid:20144350v59n2p271
dc.description.abstract
Let R be a left Artinian ring, and M a faithful left R-module such that no proper submodule or homomorphic image of M is faithful. If R is local, and socle(R) is central in R, we show that length(M=J(R)M) + length(socle(M)) ≤ length(socle(R)) + 1. If R is a finite-dimensional algebra over an algebraically closed field, but not necessarily local or having central socle, we get an inequality similar to the above, with the length of socle(R) interpreted as its length as a bimodule, and the summand +1 replaced by the Euler characteristic of a graph determined by the bimodule structure of socle(R). The statement proved is slightly more general than this summary; we examine the question of whether much stronger generalizations are possible. If a faithful module M over an Artinian ring is only assumed to have one of the above minimality properties { no faithful proper submodules, or no faithful proper homomorphic images { we find that the length of M=J(R)M in the former case, and of socle(M) in the latter, is ≤ length(socle(R)). The proofs involve general lemmas on decompositions of modules.
dc.format
application/pdf
dc.relation
Publicacions matemàtiques ; Vol. 59 Núm. 2 (2015), p. 271-300
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Faithful modules over artinian rings
dc.subject
Length of a module or bimodule
dc.subject
Socle of a ring or module
dc.title
Minimal faithful modules over Artinian rings