On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity

Author

Carro, María J.

Publication date

2002

Abstract

Given a sublinear operator T satisfying that T f Lp (ν) ≤ C p-1 f Lp (µ), for every 1 < p ≤ p0, with C independent of f and p, it was proved in [C] that ∞ λν f (y) dy T 1/r sup |f (x)|(1 + log+ |f (x)|) dµ(x). r>0 1 + log+ r M This estimate implies that T : L log L → B, where B is a re- arrangement invariant space. The purpose of this note is to give several characterizations of the space B and study its associate space. This last information allows us to formulate an extrap- olation result of Zygmund type for linear operators satisfying T f Lp (ν) ≤q Cp f Lp (µ), for every p ≥ p0.

Document Type

Article

Language

English

Subjects and keywords

Extrapolation; Boundeness of operators; Endpoint estimates

Publisher

 

Related items

Publicacions matemàtiques ; Vol. Extra (2002), p. 27-37

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)