dc.contributor.author
Jaume, Daniel
dc.contributor.author
Massó, Jordi
dc.contributor.author
Neme, Alejandro
dc.identifier
https://ddd.uab.cat/record/143621
dc.identifier
urn:10.1007/s00186-012-0395-4
dc.identifier
urn:oai:ddd.uab.cat:143621
dc.identifier
urn:articleid:14322994v76n2p161
dc.identifier
urn:recercauab:ARE-74556
dc.identifier
urn:scopus_id:84867271366
dc.identifier
urn:wos_id:000309232300004
dc.identifier
urn:altmetric_id:2931936
dc.identifier
urn:oai:egreta.uab.cat:publications/35f5fc01-500b-47a2-99e2-8e2abe482dbe
dc.description.abstract
We thank Ester Camiña, John Hatfield, Alejandro Manelli, and two anonymous referees for their very helpful comments and suggestions. The work of D. Jaume and A. Neme is partially supported by the Universidad Nacional de San Luis through grant 319502 and by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through grant PICT-02114. Support for the research of J. Massó was received through the prize "ICREA Acadèmia" for excellence in research, funded by the Generalitat de Catalunya. He also acknowledges the support of MOVE, where he is an a¢ liated researcher. His work is also supported by the Spanish Ministry of Science and Innovation through grants ECO2008-04756 (Grupo Consolidado-C) and CONSOLIDER-INGENIO 2010 (CDS2006-00016), and by the Generalitat de Catalunya through grant SGR2009-419
dc.description.abstract
Altres ajuts: MINCYT/PICT-02114
dc.description.abstract
A multiple-partners assignment game with heterogeneous sales and multi-unit demands consists of a set of sellers that own a given number of indivisible units of potentially many different goods and a set of buyers who value those units and want to buy at most an exogenously fixed number of units. We define a competitive equilibrium for this generalized assignment game and prove its existence by using only linear programming. In particular, we show how to compute equilibrium price vectors from the solutions of the dual linear program associated to the primal linear program defined to find optimal assignments. Using only linear programming tools, we also show (i) that the set of competitive equilibria (pairs of price vectors and assignments) has a Cartesian product structure: each equilibrium price vector is part of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that the set of (restricted) equilibrium price vectors has a natural lattice structure; and (iii) how this structure is translated into the set of agents' utilities that are attainable at equilibrium
dc.format
application/pdf
dc.relation
Ministerio de Ciencia e Innovación ECO2008-04756
dc.relation
Ministerio de Economía y Competitividad CDS2006-00016
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-419
dc.relation
Mathematical methods of operations research ; Vol. 76 Núm. 2 (October 2012), p. 161-187
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Jocs, Teoria de
dc.subject
Assignment game
dc.subject
Indivisible goods
dc.subject
Competitive equilibrium
dc.title
The multiple-partners assignment game with heterogeneous and multi-unit demands: competitive equilibria