dc.contributor.author
Ros-Oton, Xavier
dc.identifier
https://ddd.uab.cat/record/144960
dc.identifier
urn:10.5565/PUBLMAT_60116_01
dc.identifier
urn:oai:ddd.uab.cat:144960
dc.identifier
urn:oai:raco.cat:article/302224
dc.identifier
urn:articleid:20144350v60n1p3
dc.identifier
urn:scopus_id:84958143675
dc.identifier
urn:wos_id:000373250200001
dc.description.abstract
In this paper we survey some results on the Dirichlet problem for nonlocal operators of the form. We start from the very basics, proving existence of solutions, maximum principles, and constructing some useful barriers. Then, we focus on the regularity properties of solutions, both in the interior and on the boundary of the domain. In order to include some natural operators L in the regularity theory, we do not assume any regularity on the kernels. This leads to some interesting features that are purely nonlocal, in the sense that they have no analogue for local equations. We hope that this survey will be useful for both novel and more experienced researchers in the field.
dc.format
application/pdf
dc.relation
Publicacions matemàtiques ; Vol. 60 Núm. 1 (2016), p. 3-26
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Integro-differential equations
dc.subject
Bounded domains
dc.title
Nonlocal elliptic equations in bounded domains : a survey