We study the set of periods of degree 1 continuous maps from σ into itself, where σ denotes the space shaped like the letter σ (i.e., a segment attached to a circle by one of its endpoints). Since the maps under consideration have degree 1, the rotation theory can be used. We show that, when the interior of the rotation interval contains an integer, then the set of periods (of periodic points of any rotation number) is the set of all integers except maybe 1 or 2. We exhibit degree 1 σ-maps f whose set of periods is a combination of the set of periods of a degree 1 circle map and the set of periods of a 3-star (that is, a space shaped like the letter Y ). Moreover, we study the set of periods forced by periodic orbits that do not intersect the circuit of σ; in particular, when there exists such a periodic orbit whose diameter, at lifting level, is at least 1, then there exist periodic points of all periods.
English
Degree one; Large orbits; Rotation set; Set of periods; Sigma maps; Star maps
Ministerio de Economía y Competitividad MTM2008-01486
Ministerio de Economía y Competitividad MTM2011-26995-C02-01
Discrete and continuous dynamical systems. Series A ; Vol. 35 Núm. 10 (2015), p. 4683-4734
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/