Agraïments: This work has been carried out thanks to the support of the ARCHIMEDE Labex (ANR-11-LABX- 0033).
We study the volume entropy of a class of presentations (including the classical ones) for all surface groups, called minimal geomètric presentations. We rediscover a formula first obtained by Cannon and Wagreich [6] with the computation in a non published manuscrit by Cannon [5]. The result is surprising: an explicit polynomial of degree n, the rank of the group, encodes the volume entropy of all classical presentations of surface groups. The approach we use is completely different. It is based on a dynamical system construction following an idea due to Bowen and Series [3] and extended to all geometric presentations in [15]. The result is an explicit formula for the volume entropy of minimal presentations for all surface groups, showing a polynomial dependence in the rank n > 2. We prove that for a surface group Gn of rank n with a classical presentation Pn the volume entropy is log(λn), where λn is the unique real root larger than one of the polynomial x n − 2(n − 1) nX−1 j=1 x j + 1.
English
Bowen-Series Markov maps; Surface groups; Topological entropy; Volume entropy
Ministerio de Economía y Competitividad MTM2008-01486
Ministerio de Economía y Competitividad MTM2011-26995-C02-01
Geometriae dedicata (Dordrecht) ; Vol. 180 (August 2015), p. 293-322
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/