dc.contributor.author
Llibre, Jaume
dc.contributor.author
Valls, Clàudia
dc.contributor.author
Zhang, Xiang
dc.identifier
https://ddd.uab.cat/record/145335
dc.identifier
urn:10.1007/s00332-015-9243-z
dc.identifier
urn:oai:ddd.uab.cat:145335
dc.identifier
urn:gsduab:3750
dc.identifier
urn:scopus_id:84933177725
dc.identifier
urn:wos_id:000356875900001
dc.identifier
urn:oai:egreta.uab.cat:publications/8fdf840a-d210-4adc-bdbe-e1ca5b34be48
dc.identifier
urn:articleid:14321467v25n4p815
dc.description.abstract
El títol de la versió pre-print de l'article és: The Completely Integrable Differential Systems are Essentially Linear
dc.description.abstract
Agraïments: Grant UNAB13-4E-1604, and from the recruitment program of high-end foreign experts of China. The second author is supported by Portuguese national funds through FCT-Fundação para a Ciência e a Tecnologia: Project PEst-OE/EEI/LA0009/2013 (CAMGSD). The third author is partially supported by NNSF of China Grant Number 11271252, by RFDP of Higher Education of China Grant Number 20110073110054 and by innovation program of Shanghai municipal education commission Grant 15ZZ012.
dc.description.abstract
Let ˙x = f(x) be a C k autonomous differential system with k ∈ N ∪ {∞, ω} defined in an open subset Ω of R n. Assume that the system ˙x = f(x) is C r completely integrable, i.e. there exist n-1 functionally independent first integrals of class C r with 2 ≤ r ≤ k. If the divergence of system ˙x = f(x) is non-identically zero, then any Jacobian multiplier is functionally independent of the n - 1 first integrals. Moreover the system ˙x = f(x) is C r-1 orbitally equivalent to the linear differential system ˙y = y in a full Lebesgue measure subset of Ω. For Darboux and polynomial integrable polynomial differential systems we characterize their type of Jacobian multipliers.
dc.format
application/pdf
dc.relation
Ministerio de Economía y Competitividad MTM2008-03437
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568
dc.relation
European Commission 316338
dc.relation
European Commission 318999
dc.relation
Journal of Nonlinear Science ; Vol. 25 Núm. 4 (2015), p. 815-826
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Completely integrability
dc.subject
Differential systems
dc.subject
Jacobian multiplier
dc.subject
Orbital equivalence
dc.subject
Polynomial differential systems
dc.title
The Completely Integrable Differential Systems are Essentially Linear Differential Systems