dc.contributor.author
Benini, Anna Miriam
dc.contributor.author
Fagella Rabionet, Núria
dc.identifier
https://ddd.uab.cat/record/145365
dc.identifier
urn:10.1112/plms/pdu047
dc.identifier
urn:oai:ddd.uab.cat:145365
dc.identifier
urn:gsduab:3378
dc.identifier
urn:scopus_id:84928895755
dc.identifier
urn:wos_id:000350126000002
dc.identifier
urn:articleid:00246115v110p291
dc.description.abstract
Agraïments: Anna Miriam Benini was partially supported by the ERC grant HEVO - Holomorphic Evolution Equations n. 277691. Both authors were supported by the European network MRTN-CT-2006-035651-2-CODY MRTN-CT-2006-035651-2-CODY
dc.description.abstract
We study the distribution of periodic points for a wide class of maps, namely entire transcendental functions of finite order and with bounded set of singular values, or compositions thereof. Fix p ∈ N and assume that all dynamic rays which are invariant under f p land. An interior p-periodic point is a fixed point of f p which is not the landing point of any periodic ray invariant under f p . Points belonging to attracting, Siegel or Cremer cycles are examples of interior periodic points. For functions as above, we show that rays which are invariant under f p , together with their landing points, separate the plane into finitely many regions, each containing exactly one interior p-periodic point or one parabolic immediate basin invariant under f p . This result generalizes the Goldberg-Milnor Separation Theorem for polynomials [GM], and has several corollaries. It follows, for example, that two periodic Fatou components can always be separated by a pair of periodic rays landing together; that there cannot be Cremer points on the boundary of Siegel disks; that "hidden components" of a bounded Siegel disk have to be either wandering domains or preperiodic to the Siegel disk itself; or that there are only finitely many non-repelling cycles of any given period, regardless of the number of singular values.
dc.format
application/pdf
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-792
dc.relation
Ministerio de Economía y Competitividad MTM-2008-01486
dc.relation
Ministerio de Economía y Competitividad MTM2006-05849
dc.relation
Ministerio de Economía y Competitividad MTM2011-26995-C02-02
dc.relation
Proceedings of the London Mathematical Society. Third Series ; Vol. 110 (2015), p. 291-324
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.title
A separation theorem for entire transcendental maps