Agraïments: The third author is partially supported by a grant FAPESP-2007/06896-5. All authors are also supported by the joint project CAPES-MECD grant HBP-2009-0025-PC.
We consider one-parameter families of 2-dimensional vector fields Xµ having in a convenient region R a semistable limit cycle of multiplicity 2m when µ = 0, no limit cycles if µ / 0, and two limit cycles one stable and the other unstable if µ ' 0. We show, analytically for some particular families and numerically for others, that associated to the semistable limit cycle and for positive integers n sufficiently large there is a power law in the parameter µ of the form µn ≈ Cnα < 0 with C, α ∈ R, such that the orbit of Xµn through a point of p ∈ R reaches the position of the semistable limit cycle of X0 after given n turns. The exponent α of this power law depends only on the multiplicity of the semistable limit cycle, and is independent of the initial point p ∈ R and of the family Xµ. In fact α = -2m/(2m - 1). Moreover the constant C is independent of the initial point p ∈ R, but it depends on the family Xµ and on the multiplicity 2m of the limit cycle Γ.
English
Semistable limit cycle; Semistable fixed point; Universal constant; Power law
Ministerio de Economía y Competitividad MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410
Computational & Applied Mathematics ; Vol. 30 Núm. 2 (2011), p. 463-483
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/