Minimal sets of periods for Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary

Author

Llibre, Jaume

Sirvent, Víctor F.

Publication date

2012

Abstract

We study the minimal set of (Lefschetz) periods of the C1 Morse-Smale diffeomorphisms on a non-orientable compact surface without boundary inside its class of homology. In fact our study extends to the C1 diffeomorphisms on these surfaces having finitely many periodic orbits all of them hyperbolic and with the same action on the homology as the Morse-Smale diffeomorphisms. We mainly have two kind of results. First we completely characterize the minimal sets of periods for the C1 Morse-Smale diffeomorphisms on non-orientable compact surface without boundary of genus g with 1 ≤ g ≤ 9. But the proof of these results provides an algorithm for characterizing these minimal sets of periods for the C1 Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary of arbitrary genus. Second we study what kind of subsets of positive integers can be minimal sets of periods of the C1 Morse-Smale diffeomorphisms on a non-orientable compact surface without boundary.

Document Type

Article

Language

English

Subjects and keywords

Morse-Smale diffeomorphism; Lefschetz number; Zeta function; Set of periods; Minimal set of periods; Non-orientable compact surfaces

Publisher

 

Related items

Ministerio de Ciencia e Innovación MTM2008-03437

Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410

Journal of Difference Equations and Applications ; Vol. 19 Núm. 3 (2012), p. 402-417

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)