Agraïments: The first and third author is partially supported by the Algerian Ministry of Higher Education and Scientific Research.
We consider the class of polynomial differential equations ˙x = λx + Pn(x, y), y˙ = λy + Qn(x, y), in R2 where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ ̸= 0, i.e. the class of polynomial differential systems with homogeneous nonlinearities with a star node at the origin. We prove that these systems are Darboux integrable. Moreover, for these systems we study the existence and non-existence of limit cycles surrounding the equilibrium point located at the origin.
English
Star node; Cubic system; Limit cycle
Ministerio de Economía y Competitividad MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410
European Commission 316338
European Commission 318999
Journal of differential equations ; Vol. 254 (2013), p. 3530-3537
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/