Agraïments: The third author is supported by the grants AGAUR PIV-DGR-2010 and by FCT through CAMGD
The quadrics here considered are the nine real quadrics: parabolic cylinder, elliptic cylinder, hyperbolic cylinder, cone, hyperboloid of one sheet, hyperbolic paraboloid, elliptic paraboloid, ellipsoid and hyperboloid of two sheets. Let Q be one of these quadrics. We consider a polynomial vector field X = (P, Q, R) in R3 whose flow leaves Q invariant. If m1 = degree P, m2 = degree Q and m3 = degree R, we say that m = (m1, m2, m3) is the degree of X. In function of these degrees we find a bound for the maximum number of invariant conics of X that result from the intersection of invariant planes of X with Q. The conics obtained can be degenerate or not. Since the first six quadrics mentioned are ruled surfaces, the degenerate conics obtained are formed by a point, a double straight line, two parallel straight lines, or two intersecting straight lines; thus for the vector fields defined on these quadrics we get a bound for the maximum number of invariant straight lines contained in invariant planes of X. In the same way, if the conic is non degenerate, it can be a parabola, an ellipse or a hyperbola and we provide a bound for the maximum number of invariant non degenerate conics of the vector field X depending on each quadric Q and of the degrees m1, m2 and m3 of X.
English
Polynomial vector fields; Invariant quadrics; Invariant conics; Extactic polynomial
Ministerio de Ciencia e Innovación MTM2008-03437
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-410
Bulletin des Sciences Mathematiques ; Vol. 137 (2013), p. 746-774
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/