Beer classification by means of a potentiometric electronic tongue

dc.contributor.author
Cetó Alsedà, Xavier
dc.contributor.author
Gutiérrez-Capitán, Manuel
dc.contributor.author
Calvo Boluda, Daniel
dc.contributor.author
Valle Zafra, Manuel del
dc.date.issued
2013
dc.identifier
https://ddd.uab.cat/record/154800
dc.identifier
urn:10.1016/j.foodchem.2013.05.091
dc.identifier
urn:oai:ddd.uab.cat:154800
dc.identifier
urn:recercauab:ARE-71912
dc.identifier
urn:articleid:18737072v141n3p2533
dc.identifier
urn:scopus_id:84879205489
dc.identifier
urn:wos_id:000326766700131
dc.identifier
urn:altmetric_id:1518044
dc.identifier
urn:oai:egreta.uab.cat:publications/ccf252fa-1dc9-459d-88e5-cb20cd28f7d4
dc.description.abstract
In this work, an Electronic Tongue (ET) system based on an array of potentiometric ion-selective electrodes (ISEs) is presented for the discrimination of different commercial beer types is presented. The array was formed by 21 ISEs combining both cationic and anionic sensors with others with generic response. For this purpose beer samples were analyzed with the ET without any pretreatment rather than the smooth agitation of the samples with a magnetic stirrer in order to reduce the foaming of samples, which could interfere into the measurements. Then, the obtained responses were evaluated using two different pattern recognition methods, Principal Component Analysis (PCA) and Linear Discriminant Analysis(LDA) in order to achieve the correct recognition of samples variety. In the case of LDA, a stepwise inclusion method for variable selection based on Mahalanobis distance criteria was used to select the most discriminating variables. Finally, the results showed that the use of supervised pattern recognition methods such as LDA is a good alternative for the resolution of complex identification situations. In addition, in order to show a quantitative application, alcohol content was predicted from the array data employing an Artificial Neural Network model.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Ciencia e Innovación CTQ2010-17099
dc.relation
Food chemistry ; Vol. 141, Issue 3 (2013), p. 2533-2540
dc.rights
open access
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Electronic Tongue
dc.subject
Linear Discriminant Analysis
dc.subject
Potentiometric sensors
dc.subject
Classification
dc.subject
Beer
dc.subject
Alcohol by volume
dc.title
Beer classification by means of a potentiometric electronic tongue
dc.type
Article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)