Equigeneric and equisingular families of curves on surfaces

Author

Dedieu, Thomas

Sernesi, E.

Publication date

2017

Abstract

We investigate the following question: let C be an integral curve contained in a smooth complex algebraic surface X; is it possible to deform C in X into a nodal curve while preserving its geometric genus? We armatively answer it in most cases when X is a Del Pezzo or Hirzebruch surface (this is due to Arbarello and Cornalba, Zariski, and Harris), and in some cases when X is a K3 surface. Partial results are given for all surfaces with numerically trivial canonical class. We also give various examples for which the answer is negative.

Document Type

Article

Language

English

Subjects and keywords

Families of singular curves on algebraic surfaces; Equigeneric and equisingular deformations; Nodal curves

Publisher

 

Related items

;

Publicacions matemàtiques ; Vol. 61 Núm. 1 (2017), p. 175-212

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)