We study the center problem for planar systems with a linear center at the origin that in complex coordinates have a nonlinearity formed by the sum of two monomials. Our first result lists several centers inside this family. To the best of our knowledge this list includes a new class of Darboux centers that are also persistent centers. The rest of the paper is dedicated to try to prove that the given list is exhaustive. We get several partial results that seem to indicate that this is the case. In particular, we solve the question for several general families with arbitrary high degree and for all cases of degree less or equal than 19. As a byproduct of our study we also obtain the highest known order for weak-foci of planar polynomial systems of some given degrees.
English
Darboux center; Holomorphic center; Nondegenerate center; Persistent center; Poincaré-Lyapunov constants; Reversible center
Ministerio de Economía y Competitividad MTM2008-03437
Ministerio de Economía y Competitividad MTM2013-40998-P
Ministerio de Economía y Competitividad MTM2011-22877
Ministerio de Economía y Competitividad UNAB10-4E-378
Ministerio de Economía y Competitividad UNAB13-4E-1604
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1204
Communications on pure & applied analysis ; Vol. 15 Núm. 2 (2016), p. 577-598
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/