Asymptotic expansion of the heteroclinic bifurcation for the planar normal form of the 1:2 resonance

Author

Roberto, Lucy Any

Da Silva, Paulo R.

Torregrosa, Joan

Publication date

2016

Abstract

Agraïments: The first author is partially supported by CAPES and FAPESP. The second author is partially supported by CAPES, CNPq-Brazil, and FAPESP.


We consider the family of planar differential systems depending on two real parameters \[ x =y, y = _1 x _2 y x^3-x^2y.\] This system corresponds to the normal form for the 1:2 resonance which exhibits a heteroclinic connection. The phase portrait of the system has a limit cycle which disappears in the heteroclinic connection for the parameter values on the curve _2=c(_1)=-15_1 O(_1^2), _1<0. We significantly improve the knowledge of this curve in a neighborhood of the origin.

Document Type

Article

Language

English

Subjects and keywords

1:2 Resonance; Bifurcation diagram; Homoclinic Connections; Planar Systems

Publisher

 

Related items

Ministerio de Economía y Competitividad MTM2008-03437

Ministerio de Economía y Competitividad MTM2013-40998-P

Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568

European Commission 318999

International journal of bifurcation and chaos in applied sciences and engineering ; Vol. 26 Núm. 1 (2016), p. 1650017 (8 pages)

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)