Author

Llibre, Jaume

Pantazi, Chara

Publication date

2016

Abstract

We study the maximum number of limit cycles that can bifurcate from a degenerate center of a cubic homogeneous polynomial differential system. Using the averaging method of second order and perturbing inside the class of all cubic polynomial differential systems we prove that at most three limit cycles can bifurcate from the degenerate center. As far as we know this is the first time that a complete study up to second order in the small parameter of the perturbation is done for studying the limit cycles which bifurcate from the periodic orbits surrounding a degenerate center (a center whose linear part is identically zero) having neither a Hamiltonian first integral nor a rational one. This study needs many computations, which have been verified with the help of the algebraic manipulator Maple.

Document Type

Article

Language

English

Subjects and keywords

Averaging theory; Centers; Limit cycle; Polynomial differential systems

Publisher

 

Related items

Mathematics and computers in simulation ; Vol. 120 (2016), p. 1-11

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)