Author

Euvrard, Charlotte

Maire, Christian

Publication date

2017

Abstract

In this paper, we are interested in the question of separating two characters of the absolute Galois group of a number field K, by the Frobenius of a prime ideal p of OK. We first recall an upper bound for the norm N(p) of the smallest such prime p, depending on the conductors and on the degrees. Then we give two applications: (i) find a prime number p for which P (mod p) has a certain type of factorization in Fp[X], where P ∈ Z[X] is a monic, irreducible polynomial of squarefree discriminant; (ii) on the estimation of the maximal number of tamely ramified extensions of Galois group An over a fixed number field K. To finish, we discuss some statistics in the quadratic number fields case (real and imaginary) concerning the separation of two irreducible unramified characters of the alterning group An,for n = 5, 7, 13.

Document Type

Article

Language

English

Subjects and keywords

Chebotarev density theorem; Frobenius; Unramified extensions; Irreducible characters

Publisher

 

Related items

;

Publicacions matemàtiques ; Vol. 61 Núm. 2 (2017), p. 475-515

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)