Expectation-maximization binary clustering for behavioural annotation

dc.contributor.author
Garriga, Joan
dc.contributor.author
Palmer, John R. B.
dc.contributor.author
Oltra, Aitana
dc.contributor.author
Bartumeus, Frederic
dc.date.issued
2016
dc.identifier
https://ddd.uab.cat/record/182066
dc.identifier
urn:10.1371/journal.pone.0151984
dc.identifier
urn:oai:ddd.uab.cat:182066
dc.identifier
urn:pmid:27002631
dc.identifier
urn:articleid:19326203v11n3p151984
dc.identifier
urn:scopus_id:84962419464
dc.identifier
urn:wos_id:000372697400063
dc.identifier
urn:pmc-uid:4803255
dc.identifier
urn:pmcid:PMC4803255
dc.identifier
urn:oai:pubmedcentral.nih.gov:4803255
dc.description.abstract
The growing capacity to process and store animal tracks has spurred the development of new methods to segment animal trajectories into elementary units of movement. Key challenges for movement trajectory segmentation are to (i) minimize the need of supervision, (ii) reduce computational costs, (iii) minimize the need of prior assumptions (e.g. simple parametrizations), and (iv) capture biologically meaningful semantics, useful across a broad range of species. We introduce the Expectation-Maximization binary Clustering (EMbC), a general purpose, unsupervised approach to multivariate data clustering. The EMbC is a variant of the Expectation-Maximization Clustering (EMC), a clustering algorithm based on the maximum likelihood estimation of a Gaussian mixture model. This is an iterative algorithm with a closed form step solution and hence a reasonable computational cost. The method looks for a good compromise between statistical soundness and ease and generality of use (by minimizing prior assumptions and favouring the semantic interpretation of the final clustering). Here we focus on the suitability of the EMbC algorithm for behavioural annotation of movement data. We show and discuss the EMbC outputs in both simulated trajectories and empirical movement trajectories including different species and different tracking methodologies. We use synthetic trajectories to assess the performance of EMbC compared to classic EMC and Hidden Markov Models. Empirical trajectories allow us to explore the robustness of the EMbC to data loss and data inaccuracies, and assess the relationship between EMbC output and expert label assignments. Additionally, we suggest a smoothing procedure to account for temporal correlations among labels, and a proper visualization of the output for movement trajectories. Our algorithm is available as an R-package with a set of complementary functions to ease the analysis.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Economía y Competitividad BFU2010-22337
dc.relation
Ministerio de Economía y Competitividad CGL2010-11600-E
dc.relation
PloS one ; Vol. 11, issue 3 (2016), e151984
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.
dc.rights
https://creativecommons.org/licenses/by/4.0/
dc.title
Expectation-maximization binary clustering for behavioural annotation
dc.type
Article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)