Numerical study of the geometry of the phase space of the augmented Hill three-body problem

Author

Farrés, Ariadna

Jorba, Àngel

Mondelo González, José María

Publication date

2017

Abstract

The Augmented Hill Three-Body problem is an extension of the classical Hill problem that, among other applications, has been used to model the motion of a solar sail around an asteroid. This model is a 3 degrees of freedom (3DoF) Hamiltonian system that depends on four parameters. This paper describes the bounded motions (periodic orbits and invariant tori) in an extended neighbourhood of some of the equilibrium points of the model. An interesting feature is the existence of equilibrium points with a 1:1 resonance, whose neighbourhood we also describe. The main tools used are the computation of periodic orbits (including their stability and bifurcations), the reduction of the Hamiltonian to centre manifolds at equilibria, and the numerical approximation of invariant tori. It is remarkable how the combination of these techniques allows the description of the dynamics of a 3DoF Hamiltonian system.

Document Type

Article

Language

English

Subjects and keywords

Hill 3-Body problem; Periodic orbits; Invariant tori; Centre manifolds; 1:1 resonance

Publisher

 

Related items

Ministerio de Economía y Competitividad MTM2015-67724-P

Ministerio de Economía y Competitividad MTM2013-41168-P

Ministerio de Economía y Competitividad MTM2016-80117-P

Ministerio de Economía y Competitividad MTM2014-52209-C2-1-P

Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1145

Celestial Mechanics and Dynamical Astronomy ; 2017

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)