Hierarchical models with normal and conjugate random effects : a review

Author

Molenberghs, Geert

Verbeke, Geert

Demétrio, Clarice Garcia Borges

Publication date

2017

Abstract

Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) proposed a general framework to model hierarchical data subject to within-unit correlation and/or overdispersion. The framework extends classical overdispersion models as well as generalized linear mixed models. Subsequent work has examined various aspects that lead to the formulation of several extensions. A unified treatment of the model framework and key extensions is provided. Particular extensions discussed are: explicit calculation of correlation and other moment-based functions, joint modelling of several hierarchical sequences, versions with direct marginally interpretable parameters, zero-inflation in the count case, and influence diagnostics. The basic models and several extensions are illustrated using a set of key examples, one per data type (count, binary, multinomial, ordinal, and time-to-event).

Document Type

Article

Language

English

Subjects and keywords

Conjugacy; Frailty; Joint modelling; Marginalized multilevel model; Mixed model; Overdispersion; Underdispersion; Variance component; Zero-inflation

Publisher

 

Related items

;

SORT : statistics and operations research transactions ; Vol. 41 Núm. 2 (July-December 2017), p. 191-254

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/3.0/

This item appears in the following Collection(s)