dc.contributor.author
Rojas, David
dc.contributor.author
Villadelprat Yagüe, Jordi
dc.identifier
https://ddd.uab.cat/record/199353
dc.identifier
urn:10.1016/j.jde.2018.01.042
dc.identifier
urn:oai:ddd.uab.cat:199353
dc.identifier
urn:gsduab:4547
dc.identifier
urn:articleid:10902732v264n11p6585
dc.identifier
urn:scopus_id:85041132885
dc.identifier
urn:wos_id:000428012700002
dc.identifier
urn:altmetric_id:20201159
dc.identifier
urn:oai:egreta.uab.cat:publications/02007814-8373-4462-9718-5dbe090ddfa5
dc.description.abstract
We consider the family of dehomogenized Loud's centers Xµ_=y(x-1)∂ₓ + (x + Dx² + Fy²)_y, where µ=(D,F)єR², and we study the number of critical periodic orbits that emerge or dissapear from the polycycle at the boundary of the period annulus. This number is defined exactly the same way as the well-known notion of cyclicity of a limit periodic set and we call it criticality. The previous results on the issue for the family {Xµ,µ є R²} distinguish between parameters with criticality equal to zero (regular parameters) and those with criticality greater than zero (bifurcation parameters). A challenging problem not tackled so far is the computation of the criticality of the bifurcation parameters, which form a set ΓB of codimension 1 in R². In the present paper we succeed in proving that a subset of ΓB has criticality equal to one.
dc.format
application/pdf
dc.relation
Ministerio de Economía y Competitividad MTM2014-52209-C2-1-P
dc.relation
Journal of differential equations ; Vol. 264, issue 11 (June 2018), p. 6585-6602
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Critical periodic orbit
dc.subject
Ceriod function
dc.title
A criticality result for polycycles in a family of quadratic reversible centers