Periodic orbits bifurcating from a nonisolated zero-Hopf equilibrium of three-dimensional differential systems revisited

Author

Cândido, Murilo R.

Llibre, Jaume

Publication date

2018

Abstract

In this paper, we study the periodic solutions bifurcating from a nonisolated zero-Hopf equilib- rium in a polynomial differential system of degree two in R³. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero-Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in R³ having n-scroll chaotic attractors.

Document Type

Article

Language

English

Subjects and keywords

Averaging theory; Periodic solutions; Polynomial differential systems; Zero-Hopf bifurcation; Zero-Hopf equilibrium

Publisher

 

Related items

Ministerio de Economía y Competitividad MTM2016-77278-P

Ministerio de Economía y Competitividad MTM2013-40998-P

Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568

International journal of bifurcation and chaos in applied sciences and engineering ; Vol. 28, no. 5 (2018), art. 1850058

Rights

open access

Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.

https://rightsstatements.org/vocab/InC/1.0/

This item appears in the following Collection(s)