In this paper, we study the periodic solutions bifurcating from a nonisolated zero-Hopf equilib- rium in a polynomial differential system of degree two in R³. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero-Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in R³ having n-scroll chaotic attractors.
English
Averaging theory; Periodic solutions; Polynomial differential systems; Zero-Hopf bifurcation; Zero-Hopf equilibrium
Ministerio de Economía y Competitividad MTM2016-77278-P
Ministerio de Economía y Competitividad MTM2013-40998-P
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-568
International journal of bifurcation and chaos in applied sciences and engineering ; Vol. 28, no. 5 (2018), art. 1850058
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/