We study the family of singular perturbations of Blaschke products B_a,(z)=z^3-a1- ^2. We analyse how the connectivity of the Fatou components varies as we move continuously the parameter . We prove that all possible escaping configurations of the critical point c_-(a,) take place within the parameter space. In particular, we prove that there are maps B_a, which have Fatou components of arbitrarily large finite connectivity within their dynamical planes.
English
Holomorphic dynamics; Blaschke products; McMullen-like Julia sets; Singular perturbations; Connectivity of Fatou components
Journal of mathematical analysis and applications ; Vol. 462, issue 1 (June 2018), p. 35-56
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/