Let f be a function in the Eremenko-Lyubich class B, and let U be an unbounded, forward invariant Fatou component of f. We relate the number of singularities of an inner function associated to f $w ith the number of tracts of f. In particular, we show that if f lies in either of two large classes of functions in B, and also has finitely many tracts, then the number of singularities of an associated inner function is at most equal to the number of tracts of f. Our results imply that for hyperbolic functions of finite order there is an upper bound - related to the order - on the number of singularities of an associated inner function.
English
Transcendental dynamics; Inner functions; Hyperbolic functions
Ministerio de Economía y Competitividad MTM2017-86795-C3-2-P
Ministerio de Economía y Competitividad MDM-2014-0445
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1374
Journal of mathematical analysis and applications ; Vol. 477, Issue 1 (September 2019), p. 536-550
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/