We study the dynamical behaviour of points in the boundaries of simply connected invariant Baker domains U of meromorphic maps f with a finite degree on U. We prove that if f $u is of doubly parabolic type, then almost every point in the boundary of U, with respect to harmonic measure, has dense forward trajectory in the boundary of U, in particular the set of escaping points in the boundary of U has harmonic measure zero. We also present some extensions of the results to the case when f has infinite degree on U, including the classical Fatou example. $u is of hyperbolic or simply parabolic type, then almost every point in the boundary ofU,with respect to harmonicmeasure, escapes to infinity under iteration of f. On the contrary, if f
English
Ministerio de Economía y Competitividad MTM2011-26995-C02-02
Ministerio de Economía y Competitividad MTM2014-52209-C2-2-P
Journal d'Analyse Mathématique ; Vol. 137, Issue 2 (March 2019), p. 679-706
open access
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
https://rightsstatements.org/vocab/InC/1.0/