dc.contributor.author
Calò, Annalisa
dc.contributor.author
Eleta-Lopez, Aitziber
dc.contributor.author
Stoliar, Pablo
dc.contributor.author
De Sancho, David
dc.contributor.author
Santos, Sergio
dc.contributor.author
Verdaguer Prats, Albert
dc.contributor.author
Bittner, Alexander M.
dc.identifier
https://ddd.uab.cat/record/204837
dc.identifier
urn:10.1038/srep21899
dc.identifier
urn:oai:ddd.uab.cat:204837
dc.identifier
urn:pmid:26915629
dc.identifier
urn:scopus_id:84959420998
dc.identifier
urn:articleid:20452322v6p21899
dc.identifier
urn:wos_id:000370859100001
dc.identifier
urn:altmetric_id:6011439
dc.identifier
urn:pmc-uid:4768132
dc.identifier
urn:pmcid:PMC4768132
dc.identifier
urn:oai:pubmedcentral.nih.gov:4768132
dc.identifier
urn:icn2uab:6089041
dc.description.abstract
High-resolution microscopy techniques have been extensively used to investigate the structure of soft, biological matter at the nanoscale, from very thin membranes to small objects, like viruses. Electron microscopy techniques allow for obtaining extraordinary resolution by averaging signals from multiple identical structures. In contrast, atomic force microscopy (AFM) collects data from single entities. Here, it is possible to finely modulate the interaction with the samples, in order to be sensitive to their top surface, avoiding mechanical deformations. However, most biological surfaces are highly curved, such as fibers or tubes, and ultimate details of their surface are in the vicinity of steep height variations. This limits lateral resolution, even when sharp probes are used. We overcome this problem by using multifrequency force microscopy on a textbook example, the Tobacco Mosaic Virus (TMV). We achieved unprecedented resolution in local maps of amplitude and phase shift of the second excited mode, recorded together with sample topography. Our data, which combine multifrequency imaging and Fourier analysis, confirm the structure deduced from averaging techniques (XRD, cryoEM) for surface features of single virus particles, down to the helical pitch of the coat protein subunits, 2.3 nm. Remarkably, multifrequency AFM images do not require any image postprocessing.
dc.format
application/pdf
dc.relation
Ministerio de Economía y Competitividad RYC-2012-01031
dc.relation
Scientific reports ; Vol. 6 (February 2016), art. 21899
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.
dc.rights
https://creativecommons.org/licenses/by/4.0/
dc.subject
Tobacco Mosaic Virus
dc.title
Multifrequency Force Microscopy of Helical Protein Assembly on a Virus