dc.contributor.author
Alonso-Díaz, Alejandro
dc.contributor.author
Floriach Clark, Jordi
dc.contributor.author
Fuentes Lazaro, Judit
dc.contributor.author
Capellades, Montserrat
dc.contributor.author
Sánchez Coll, Núria
dc.contributor.author
Laromaine, Anna
dc.identifier
https://ddd.uab.cat/record/205853
dc.identifier
urn:10.1021/acsbiomaterials.8b01171
dc.identifier
urn:oai:ddd.uab.cat:205853
dc.identifier
urn:articleid:23739878v5n2p413
dc.identifier
urn:scopus_id:85060576781
dc.identifier
urn:wos_id:000458937900003
dc.identifier
urn:altmetric_id:53948002
dc.description.abstract
Efficacy and efficiency of pesticide application in the field through the foliage still face many challenges. There exists a mismatch between the hydrophobic character of the leaf and the active molecule, low dispersion of the pesticides on the leaves' surface, runoff loss, and rolling down of the active molecules to the field, decreasing their efficacy and increasing their accumulation to the soil. We produced bacterial cellulose-silver nanoparticles (BC-AgNPs) hybrid patches by in situ thermal reduction under microwave irradiation in a scalable manner and obtaining AgNPs strongly anchored to the BC. Those hybrids increase the interaction of the pesticide (AgNPs) with the foliage and avoids runoff loss and rolling down of the nanoparticles. The positive antibacterial and antifungal properties were assessed in vitro against the bacteria Escherichia coli and two agro-economically relevant pathogens: the bacterium Pseudomonas syringae and the fungus Botrytis cinerea. We showed in vivo inhibition of the infection in Nicotiana benthamiana and tomato leaves, as proven by the suppression of the expression of defense molecular markers and reactive oxygen species production. The hydrogel-like character of the bacterial cellulose matrix increases the adherence to the foliage of the patches.
dc.format
application/pdf
dc.relation
Ministerio de Economía y Competitividad AGL2016-78002-R
dc.relation
Ministerio de Economía y Competitividad RyC-2014-16158
dc.relation
Ministerio de Economía y Competitividad MAT2015-64442-R
dc.relation
Ministerio de Economía y Competitividad SEV-2015-0533
dc.relation
Ministerio de Economía y Competitividad SEV-2015-0496
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-765
dc.relation
ACS biomaterials science & engineering ; Vol. 5, Issue 2 (February 2019), p. 413-419
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Bacterial cellulose
dc.subject
Silver nanoparticles
dc.subject
Preventing infection
dc.subject
Nicotiana benthamiana
dc.title
Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches