A proposal for evading the measurement uncertainty in classical and quantum computing : Application to a resonant tunneling diode and a Mach-Zehnder interferometer

dc.contributor.author
Pandey, Devashish
dc.contributor.author
Bellentani, Laura
dc.contributor.author
Villani, Matteo
dc.contributor.author
Albareda, Guillermo
dc.contributor.author
Bordone, Paolo
dc.contributor.author
Oriols, Xavier
dc.date.issued
2019
dc.identifier
https://ddd.uab.cat/record/213183
dc.identifier
urn:10.3390/app9112300
dc.identifier
urn:oai:ddd.uab.cat:213183
dc.identifier
urn:scopus_id:85067256293
dc.identifier
urn:articleid:20763417v9n11p2300
dc.identifier
urn:wos_id:000472641200128
dc.identifier
urn:oai:egreta.uab.cat:publications/e9140e47-a34a-4dca-9ba8-c8f42d8fd08a
dc.description.abstract
Altres ajuts: Barcelona Supercomputing Center (project HPC17D8XLY)
dc.description.abstract
Measuring properties of quantum systems is governed by a stochastic (collapse or state-reduction) law that unavoidably yields an uncertainty (variance) associated with the corresponding mean values. This non-classical source of uncertainty is known to be manifested as noise in the electrical current of nanoscale electron devices, and hence it can flaw the good performance of more complex quantum gates. We propose a protocol to alleviate this quantum uncertainty that consists of (i) redesigning the device to accommodate a large number of electrons inside the active region, either by enlarging the lateral or longitudinal areas of the device and (ii) re-normalizing the total current to the number of electrons. How the above two steps can be accommodated using the present semiconductor technology has been discussed and numerically studied for a resonant tunneling diode and a Mach-Zehnder interferometer, for classical and quantum computations, respectively. It is shown that the resulting protocol formally resembles the so-called collective measurements, although, its practical implementation is substantially different.
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
Ministerio de Ciencia e Innovación TEC2015-67462-C2-1-R
dc.relation
European Commission 785219
dc.relation
European Commission 765426
dc.relation
European Commission 730897
dc.relation
Applied sciences (Basel) ; Vol. 9, Issue 11 (June 2019), art. 2300
dc.rights
open access
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.
dc.rights
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum computing
dc.subject
Classical computing
dc.subject
Mach-Zehnder Interferometer
dc.subject
Resonant tunneling diode
dc.subject
Quantum uncertainty
dc.subject
Measurement
dc.title
A proposal for evading the measurement uncertainty in classical and quantum computing : Application to a resonant tunneling diode and a Mach-Zehnder interferometer
dc.type
Article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)