dc.contributor.author
Zuo, Yong
dc.contributor.author
Liu, Yongpeng
dc.contributor.author
Li, Junshan
dc.contributor.author
Du, Ruifeng
dc.contributor.author
Han, Xu
dc.contributor.author
Zhang, Ting
dc.contributor.author
Arbiol i Cobos, Jordi
dc.contributor.author
Jiménez Divins, Nuria
dc.contributor.author
Llorca, Jordi
dc.contributor.author
Guijarro, Néstor
dc.contributor.author
Sivula, Kevin
dc.contributor.author
Cabot i Codina, Andreu
dc.identifier
https://ddd.uab.cat/record/220645
dc.identifier
urn:10.1021/acs.chemmater.9b02790
dc.identifier
urn:oai:ddd.uab.cat:220645
dc.identifier
urn:scopus_id:85072691007
dc.identifier
urn:articleid:15205002v31n18p7732
dc.identifier
urn:wos_id:000487859200068
dc.identifier
urn:altmetric_id:65577041
dc.identifier
urn:icn2uab:6118831
dc.description.abstract
Development of cost-effective oxygen evolution catalysts is of capital importance for the deployment of large-scale energy-storage systems based on metal-air batteries and reversible fuel cells. In this direction, a wide range of materials have been explored, especially under more favorable alkaline conditions, and several metal chalcogenides have particularly demonstrated excellent performances. However, chalcogenides are thermodynamically less stable than the corresponding oxides and hydroxides under oxidizing potentials in alkaline media. Although this instability in some cases has prevented the application of chalcogenides as oxygen evolution catalysts and it has been disregarded in some others, we propose to use it in our favor to produce high-performance oxygen evolution catalysts. We characterize here the in situ chemical, structural, and morphological transformation during the oxygen evolution reaction (OER) in alkaline media of CuS into CuO nanowires, mediating the intermediate formation of Cu(OH). We also test their OER activity and stability under OER operation in alkaline media and compare them with the OER performance of Cu(OH) and CuO nanostructures directly grown on the surface of a copper mesh. We demonstrate here that CuO produced from in situ electrochemical oxidation of CuS displays an extraordinary electrocatalytic performance toward OER, well above that of CuO and Cu(OH) synthesized without this transformation.
dc.format
application/pdf
dc.relation
Ministerio de Economía y Competitividad ENE2016-77798-C4-3-R
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
dc.relation
Ministerio de Economía y Competitividad ENE2017-85087-C3
dc.relation
Ministerio de Economía y Competitividad SEV-2017-0706
dc.relation
Chemistry of materials ; Vol. 31, Issue 18 (September 2019), p. 7732-7743
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Alkaline conditions
dc.subject
Electrocatalytic performance
dc.subject
Energy storage systems
dc.subject
Intermediate formation
dc.subject
Morphological transformations
dc.subject
Oxidizing potentials
dc.subject
Oxygen evolution reaction
dc.subject
Reversible fuel cells
dc.title
In Situ Electrochemical Oxidation of Cu2S into CuO Nanowires as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction