Brain structural covariance networks in obsessive-compulsive disorder : a graph analysis from the ENIGMA Consortium

Author

Yun, Je-Yeon

Boedhoe, Premika

Vriend, Chris

Jahanshad, Neda

Abe, Yoshinari

Ameis, Stephanie H.

Anticevic, Alan

Arnold, Paul D.

Batistuzzo, Marcelo C.

Benedetti, Francesco

Beucke, Jan C.

Bollettini, Irene

Bose, Anushree

Brem, Silvia

Calvo, Anna

Cheng, Yuqi

Cho, Kang Ik K.

Ciullo, Valentina

Dallaspezia, Sara

Denys, Damiaan

Feusner, Jamie D.

Fouche, Jean-Paul

Giménez, Mònica

Gruner, Patricia

Hibar, Derrek P.

Hoexter, Marcelo Q.

Hu, Hao

Huyser, Chaim

Ikari, Keisuke

Kathmann, Norbert

Kaufmann, Christian

Koch, Kathrin

Lázaro, Luisa

Lochner, Christine

Marques, Paulo

Marsh, Rachel

Martínez-Zalacaín, Ignacio

Mataix-Cols, David

Menchón Magriñá, José Manuel

Minuzzi, Luciano

Morgado, Pedro

Moreira, Pedro

Nakamae, Takashi

Nakao, Tomohiro

Narayanaswamy, Janardhanan C.

Nurmi, Erica L.

O'Neill, Joseph

Piacentini, John

Piras, Fabrizio

Piras, Federica

Reddy, Y. C. Janardhan

Sato, Joao R.

Simpson, H. Blair

Soreni, Noam

Soriano-Mas, Carles

Spalletta, Gianfranco

Stevens, Michael C.

Szeszko, Philip R.

Tolin, David F.

Venkatasubramanian, Ganesan

Walitza, Susanne

Wang, Zhen

van Wingen, Guido

Xu, Jian

Xu, Xiufeng

Zhao, Qing

Thompson, Paul M.

Stein, Dan J.

van den Heuvel, Odile A.

Kwon, Jun Soo

Publication date

2020

Abstract

In the largest brain structural covariance study of OCD to date, Yun et al. show a less segregated organization of structural covariance networks and a reorganization of brain hubs, including cingulate and orbitofrontal regions, in OCD. The findings point to altered trajectories of brain development and maturation. Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z -score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions.

Document Type

Article

Language

English

Subjects and keywords

Brain structural covariance network; Graph theory; Obsessive-compulsive disorder; Pharmacotherapy; Illness duration

Publisher

 

Related items

Brain ; Vol. 143, núm. 2 (february 2020), p. 684-700

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original.

https://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)