Autor/a

García-Saldaña, Johanna Denise

Gasull, Armengol

Giacomini, Hector

Fecha de publicación

2020

Resumen

We prove that star-like limit cycles of any planar polynomial system can also be seen either as solutions defined on a given interval of a new associated planar non-autonomous polynomial system or as heteroclinic solutions of a 3-dimensional polynomial system. We illustrate these points of view with several examples. One of the key ideas in our approach is to decompose the periodic solutions as the sum of two suitable functions. As a first application we use these new approaches to prove that all star-like reversible limit cycles are algebraic. As a second application we introduce a function whose zeroes control the periodic orbits that persist as limit cycles when we perturb a star-like reversible center. As far as we know this is the first time that this question is solved in full generality. Somehow, this function plays a similar role that an Abelian integral for studying perturbations of Hamiltonian systems.

Tipo de documento

Article

Lengua

Inglés

Materias y palabras clave

Periodic orbits; Limit cycle; Abelian integral; Heteroclinic solution; Reversible center; Algebraic limit cycle

Publicado por

 

Documentos relacionados

Ministerio de Ciencia e Innovación MTM2016-77278-P

Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617

Journal of differential equations ; Vol. 269, Issue 7 (September 2020), p. 6269-6292

Derechos

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)