dc.contributor.author
Han, Maoan
dc.contributor.author
Llibre, Jaume
dc.contributor.author
Tian, Yun
dc.identifier
https://ddd.uab.cat/record/232162
dc.identifier
urn:10.3390/math8071137
dc.identifier
urn:oai:ddd.uab.cat:232162
dc.identifier
urn:scopus_id:85087879861
dc.identifier
urn:articleid:22277390v8n7p1137
dc.identifier
urn:gsduab:4607
dc.identifier
urn:oai:egreta.uab.cat:publications/ccefca35-213f-4d47-aa5e-dc8afc562ab2
dc.description.abstract
Here we study the Lotka-Volterra systems in R3, i.e. the differential systems of the form dxi/dt = xi(ri - Σ3j=1 aijxj), i = 1, 2, 3. It is known that some of these differential systems can have at least four periodic orbits bifurcating from one of their equilibrium points. Here we prove that there are some of these differential systems exhibiting at least six periodic orbits bifurcating from one of their equilibrium points. The tool for proving this result is the averaging theory of third order.
dc.format
application/pdf
dc.format
application/pdf
dc.relation
Ministerio de Ciencia e Innovación MDM-2014-0445
dc.relation
Ministerio de Ciencia e Innovación MTM2016-77278-P
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617
dc.relation
European Commission 777911
dc.relation
Mathematics ; Vol. 8, Issue 7 (July 2020), art. 1137
dc.rights
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.
dc.rights
https://creativecommons.org/licenses/by/4.0/
dc.subject
Lotka-Volterra polynomial differential systems
dc.subject
Periodic orbit
dc.subject
Hopf bifurcation
dc.subject
Averaging theory
dc.title
On the zero-Hopf bifurcation of the Lotka-Volterra systems in R3