dc.contributor.author
de Rojas, Julius
dc.contributor.author
Quintana Puebla, Alberto
dc.contributor.author
Lopeandía Fernández, Aitor
dc.contributor.author
Salguero, Joaquín
dc.contributor.author
Costa-Krämer, José L.
dc.contributor.author
Abad, Llibertat
dc.contributor.author
Liedke, Maciej Oskar
dc.contributor.author
Butterling, Maik
dc.contributor.author
Wagner, Andreas
dc.contributor.author
Henderick, Lowie
dc.contributor.author
Dendooven, Jolien
dc.contributor.author
Detavernier, Christophe
dc.contributor.author
Sort Viñas, Jordi
dc.contributor.author
Menéndez Dalmau, Enric
dc.identifier
https://ddd.uab.cat/record/233360
dc.identifier
urn:10.1002/adfm.202003704
dc.identifier
urn:oai:ddd.uab.cat:233360
dc.identifier
urn:oai:egreta.uab.cat:publications/1edda8f2-34ba-44bc-a0bd-2f81a0c97bee
dc.identifier
urn:scopus_id:85087555014
dc.identifier
urn:articleid:16163028v30n36a2003704
dc.description.abstract
Voltage control of magnetism through electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto-ionic rates and cyclability continue to be key challenges to turn magneto-ionics into real applications. Here, it is demonstrated that room-temperature magneto-ionic effects in electrolyte-gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric-double-layer transistor-like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.
dc.format
application/pdf
dc.relation
European Commission 648454
dc.relation
Ministerio de Economía y Competitividad MAT2017-86357-C3-1-R
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018/LLAV-00032
dc.relation
Advanced functional materials ; Vol. 30, Issue 36 (September 2020), art. 2003704
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Low-power spintronics
dc.subject
Magnetoelectric effects
dc.subject
Magneto-ionics
dc.title
Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor