dc.contributor.author
López-Laguna, Hèctor
dc.contributor.author
Sánchez-García, Laura
dc.contributor.author
Serna, Naroa
dc.contributor.author
Voltà-Durán, Eric
dc.contributor.author
Sanchez, Julieta M.
dc.contributor.author
Sánchez Chardi, Alejandro
dc.contributor.author
Unzueta Elorza, Ugutz
dc.contributor.author
Łoś, Marcin
dc.contributor.author
Villaverde Corrales, Antonio
dc.contributor.author
Vázquez Gómez, Esther
dc.contributor.author
Universitat Autònoma de Barcelona. Departament de Genètica i de Microbiologia
dc.identifier
https://ddd.uab.cat/record/233723
dc.identifier
urn:10.1002/smll.202001885
dc.identifier
urn:oai:ddd.uab.cat:233723
dc.identifier
urn:scopus_id:85087182709
dc.identifier
urn:articleid:16136829v16n30p2001885
dc.identifier
urn:oai:egreta.uab.cat:publications/cd21956e-bd43-4bdc-af84-7ec73ba9fc81
dc.identifier
urn:pmid:32578402
dc.description.abstract
Altres ajuts: ICREA ACADEMIA award
dc.description.abstract
Nanoscale protein materials are highly convenient as vehicles for targeted drug delivery because of their structural and functional versatility. Selective binding to specific cell surface receptors and penetration into target cells require the use of targeting peptides. Such homing stretches should be incorporated to larger proteins that do not interact with body components, to prevent undesired drug release into nontarget organs. Because of their low interactivity with human body components and their tolerated immunogenicity, proteins derived from the human microbiome are appealing and fully biocompatible building blocks for the biofabrication of nonreactive, inert protein materials within the nanoscale. Several phage and phage-like bacterial proteins with natural structural roles are produced in Escherichia coli as polyhistidine-tagged recombinant proteins, looking for their organization as discrete, nanoscale particulate materials. While all of them self-assemble in a variety of sizes, the stability of the resulting constructs at 37 °C is found to be severely compromised. However, the fine adjustment of temperature and Zn concentration allows the formation of robust nanomaterials, fully stable in complex media and under physiological conditions. Then, microbiome-derived proteins show promise for the regulatable construction of scaffold protein nanomaterials, which can be tailored and strengthened by simple physicochemical approaches.
dc.format
application/pdf
dc.format
application/pdf
dc.format
application/pdf
dc.format
application/pdf
dc.format
application/pdf
dc.format
application/pdf
dc.format
application/pdf
dc.relation
Ministerio de Ciencia e Innovación BIO2016-76063-R
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-229
dc.relation
Instituto de Salud Carlos III CP19/00028
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018FI_B2_00051
dc.relation
Agència de Gestió d'Ajuts Universitaris i de Recerca 2019FI_B00352
dc.relation
Ministerio de Ciencia e Innovación FPU18/04615
dc.relation
Small (Weinheim) ; Vol. 16, Issue 30 (July 2020), art. 2001885
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Protein engineering
dc.subject
Protein materials
dc.subject
Self-assembling protein
dc.title
Engineering protein nanoparticles out from components of the human microbiome