Beyond substrates : strain engineering of ferroelectric membranes

dc.contributor.author
Pesquera, David
dc.contributor.author
Parsonnet, Eric
dc.contributor.author
Qualls, Alexander
dc.contributor.author
Xu, Ruijuan
dc.contributor.author
Gubser, Andrew J.
dc.contributor.author
Kim, Jieun
dc.contributor.author
Jiang, Yizhe
dc.contributor.author
Velarde, Gabriel
dc.contributor.author
Huang, Yen-Lin
dc.contributor.author
Hwang, Harold Y.
dc.contributor.author
Ramesh, Ramamoorthy
dc.contributor.author
Martin, Lan W.
dc.date.issued
2020
dc.identifier
https://ddd.uab.cat/record/233952
dc.identifier
urn:10.1002/adma.202003780
dc.identifier
urn:oai:ddd.uab.cat:233952
dc.identifier
urn:scopus_id:85091292134
dc.identifier
urn:articleid:15214095v32n43p2003780
dc.identifier
urn:icn2uab:6448375
dc.description.abstract
Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO, production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100-nm-thick film). In devices integrated on flexible polymers, enhanced room-temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS-compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth.
dc.format
application/pdf
dc.format
application/pdf
dc.language
eng
dc.publisher
dc.relation
European Commission 797123
dc.relation
Ministerio de Ciencia e Innovación SEV-2017-0706
dc.relation
Advanced materials ; Vol. 32, issue 43 (Oct. 2020), art. 2003780
dc.rights
open access
dc.rights
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
dc.rights
https://rightsstatements.org/vocab/InC/1.0/
dc.subject
Complex oxides on silicon
dc.subject
Epitaxial lift-off
dc.subject
Ferroelectric domain switching
dc.subject
Flexible devices
dc.subject
Strain engineering
dc.title
Beyond substrates : strain engineering of ferroelectric membranes
dc.type
Article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)