Limit cycles from a monodromic infinity in planar piecewise linear systems

Author

Freire, Emilio

Ponce, Enrique

Torregrosa, Joan

Torres, Francisco

Publication date

2021

Abstract

Planar piecewise linear systems with two linearity zones separated by a straight line and with a periodic orbit at infinity are considered. By using some changes of variables and parameters, a reduced canonical form with five parameters is obtained. Instead of the usual Bendixson transformation to work near infinity, a more direct approach is introduced by taking suitable coordinates for the crossing points of the possible periodic orbits with the separation straight line. The required computations to characterize the stability and bifurcations of the periodic orbit at infinity are much easier. It is shown that the Hopf bifurcation at infinity can have degeneracies of co-dimension three and, in particular, up to three limit cycles can bifurcate from the periodic orbit at infinity. This provides a new mechanism to explain the claimed maximum number of limit cycles in this family of systems. The centers at infinity classification together with the limit cycles bifurcating from them are also analyzed.

Document Type

Article

Language

English

Subjects and keywords

Planar piecewise linear systems; Bifurcation from infinity; Limit cycles; Centers

Publisher

 

Related items

Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617

Ministerio de Ciencia e Innovación MTM2016-77278-P

Ministerio de Ciencia e Innovación MTM2017-87915-D2-1-P

Ministerio de Ciencia e Innovación PGC2018-096265-B-I00

European Commission 777911

Journal of mathematical analysis and applications ; Vol. 496, Issue 2 (April 2021), art. 124818

Rights

open access

Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.

https://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)